Soundscape Atlas

Yvan’s presentation
Data Management: Metadata

Importance of instrument metadata for data reuse/re-analysis

Processed data/data products - tight coupling between them, source data, metadata - valuable for discovery?

Linking species data to data chunks - identifying source of species identification

User centered design - for discovery and for metadata creation

Automatic metadata generation from instruments (SensorML?)
Data Management: Infrastructure and Workflows

Understanding of OAI-PMH vs API for data access

GIS ‘endpoint’ as a valuable MERIDIAN ‘product’

Importance of clever redirect away from non-public data

CIOOS interface collaboration?

Use of existing profiles (e.g., ORCID? User profiles?) to simplify ingest

“Fit for purpose” data
Focus Areas, Collaborations and Future opportunities I

Focus Areas

- Training new users in acoustic data
- Provide regulations, standards and clear guidelines for acoustic data
- New/different ways of analysing and visualizing acoustic data -> Machine Learning
- Ensure sustainable curation of metadata
- Support research community/data providers addressing data management needs
- Provide Big Data solutions -> management, analysis, visualisation
- Become a mediator to inform public and decision makers
Focus Areas, Collaborations and Future opportunities II

Collaborations

- CIOOS
- Industry
- Government -> e.g. DFO
- FRDR (and Libraries in general)
- Research Groups, NGO’s, government, industry -> in relation to use cases
Focus Areas, Collaborations and Future opportunities III

Future Opportunities

- Data Store (? part of CIOOS ?)
- Tackle the topics that are difficult to deal with by CIOOS -> e.g. Big Data
- Sustainable MERIDIAN
- Support decision makers -> provide tools for non-experts
- Be go-to organisation for acoustic data
Sound Detection and Classification

- **Data**
 - Limitations in quantity and quality of annotated data
 - Data augmentation techniques might help here
 - Physically motivated augmentation using sound propagation model
 - Deep learning techniques (GANs, Style Transfer, Sequence generation with RNNs, etc)
 - Goal: provide an open database for training deep learning models (the ImageNet of marine acoustics)

- **Network structures**
 - Combine computer vision (CNNs) and Speech recognition (LSTMs) strategies (like human analysts do)
 - Goal: provide flexible models that can be specialized as necessary
 - Open source library for model development
 - Pre-trained models for transfer-learning/fine tuning

- **Workshop**
 - Organize a sound detection and classification workshop next year
Acoustic Data Analysis and Tools

- **Visualization tools**
 - "Data driven" (Time series, scatter plots, ...)
 - Directional (long-term) data
 - Take advantage of open-source libraries: **Plotly (Python)**, Shiny (R), Leaflet (JavaScript), ...
 - Learn from what's already out there (Oceans 2.0, ...)

- **Analysis tools**
 - Does MERIDIAN not provide data storage?!
 - Analysis tools will only be useful if combined with data serving services!
 - Sandbox (for ONC data only) and CIOOS
 - Focus on tools that integrate data from different sources
 - Specific ideas for data-analysis products:
 - Lightweight algorithms
 - Citizen science?!
 - Apply Deep Learning to sonar data (e.g. FORCE in Bay of Fundy)
 - Glider trigger (e.g., do not resurface if a boat is right above you!)
 - Data decimation
 - Do not reinvent the wheel
 - Industry involvement