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Brief introduction to Deep Neural Networks
o  Examples of applications (image recognition, natural speech processing, etc)
o  Why is deep learning successful now?
o  Feature extraction, transfer learning
o  Basic network architectures (Multilayer perceptron, CNN, RNN)
o  Acoustic data representations
Projects
o Detecting arctic cod grunts (UVic data)
o  Classifying killer and pilot whales (WHOI)
o  Matching individual Killer whale calls (WHOI data)
o Detecting Baleen whales (ONC Barclay Canyon data)
Training Datasets
o  HF5 standard
Data augmentation strategies
© Image manipulation
©  Sound propagation modelling
o Deep Generative models
Ketos library
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o Interactive app
o Data augmentation tool
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Brief introduction to neural
networks
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Examples of applications- Computer vision g
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Facial Recognition Object detection
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Examples of applications- Natural language processing

Speech recognition/ synthesis Translation
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Feature extraction @l‘"
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Deep Learning systems aim to be end-to-end, although in practice there’s usually some level of input (signal) processing left

Machine Learning
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Why is deep learning successful now?

e Software improvements (algorithms + frameworks)
e Hardware Improvements ( Larger storage. Faster processors:cpus, gpus, tpus, etc. )
e Data improvements ( More and better data)

All of the papers available in the “artificial intelligence” section through November 18, 2018
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16,000 + papers on ArXiv.org

MIT Technology review

(https://www.technologyreview.com/s/
612768/we-analyzed-16625-papers-to-

figure-out-where-ai-is-headed-next/)



https://www.technologyreview.com/s/612768/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/
https://www.technologyreview.com/s/612768/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/
https://www.technologyreview.com/s/612768/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/
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e Dataimprovements ( More and better data)
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3 million images, 9 thousand individuals 14 million images, 921 thousand synsets (categories)
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Transfer learning

e Transfer learning can drastically reduce the training time and amount of data required

e Make models more adaptable and reusable

Initial Model (no Transfer Learning)

(Cat 0.95,
Dog 0.05)

Millions of images

New Model (with Transfer Learning)

(Cow 0.98,
Horse 0.02)

Hundreds of images
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Transfer learning

e Transfer learning can drastically reduce the training time and amount of data required
e Make models more adaptable and reusable

FaceNet: A Unified Embedding for Face Recognition and Clustering

Florian Schroff, Dmitry Kalenichenko, James Philbin
(Submitted on 12 Mar 2015 (v1), last revised 17 Jun 2015 (this version, v3))
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Basic network architectures @““I
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Multilayer perceptron

® One of the foundational architectures
for modern Deep Learning

e Rarely used on its on nowadays
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Basic network architectures

Recurrent Neural Networks (RNNs)
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The output from previous cells is used
by the next cells in addition to the
inputs (“memory”)

Works very well for sequences/
time-series

Very useful for language modelling



Basic network architectures @“Ill
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Convolutional neural network (CNN)

Feature maps

® Creates feature maps that summarize
information from one layer to the next

e Works very well for images/spatially
related features

T e Very useful for dealing with images; the
Convolutions Subsampling Convolutions  Subsampling  Fully connected building block of modern computer
vision
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Hybrid architectures

Neural Networks are usually built by combining basic architectures
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Acoustic data representations
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Transfer learning

e Waveforms
e Spectral representations

o Constant Q Transform

o  Fourier transform

o  Morlet wavelet transform
e Scalar features

Input signal

Model

Output

Amplitude

Time

Neural Network

Pre-Processing
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Projects
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Arctic cod grunts

Using a CNN (convolutional neural network) to detect fish sounds

8 x 86
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Arctic cod grunts
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Using a CNN (convolutional neural network) to detect fish sounds
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Arctic cod grunts @““I
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Using a CNN (convolutional neural network) and a to detect fish sounds
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Differentiating between killer and pilot whales using ResNETs
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Differentiating between killer and pilot whales using ResNETs
MERIDIAN -

!

INPUT Residual Block

2D Convolution
| Input

'

Batch Normalization

Residual Block

2D Convolution

RelLU activation

Residual Block ' l
Batch Normalization Batch Normalization
1
Batch Normalization 2D Convolution 2D Convolution

2D Convolution RelLU activation RelLU activation
RelLU activation
Average pooling Concatenate

Dense

Output

Ocean Networks Canada, Victoria, BC. 2019.04.29



NC
Matching individual killer whale calls with Siamese Networks @““I
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15 individuals

Accuracy: 94.6%
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Matchingindividual killer whale calls with Siamese Networks

Accuracy: 94.6%
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ONC Barclay Canyon

Using a sequence to sequence model to detect humpback whales

Er liebte zu essen

He loved to eat
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ONC Barclay Canyon

Using a sequence to sequence model to detect humpback whales

Er liebte zu essen . 20

He loved to eat
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ONC Barclay Canyon

Using a sequence to sequence model to detect humpback whales

Accuracy: 87%
Precision: 72%
Recall: 36%
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ONC Barclay Canyon
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Training datasets
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Dataset standard

Datasets are organized in hierarchical format (using HDF5)

Dataset

Training
3s_spectrograms
3s_spectrograms id data labels | boxes
10s_spectrograms
Validation uvic_23 1 (1.1,1.6,80,600)

Test
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Data Augmentation
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Simple signal manipulation tricks @l‘"
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Sound propagation modeling
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Deep generative models

Generative Adversarial Networks

Zebras _ Horses Summer Z_ Winter

WaveNETs

Variational Autoencoders
Recurrent Neural Networks
etc
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Deep generative models

Generative Adversarial Networks

Sageev Oore

Canada CIFAR Al Chair,
Associate Professor, Faculty of Computer Science, Dalhousie University
Research Faculty Member, The Vector Institute

Previously:
Visiting Research Scientist, Google Brain

Associate Professor & Chairperson (on leave)
Department of Mathematics & Computer Science, SMU
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Ketos library
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Ketos library

® Open-source python package (GPL3 license)
e Available on PyPI:
pip install ketos
e Built on top of Numpy, Tensorflow and HDF5/PyTables
e Provides:
o Data handling tools (including for larger than memory datasets)

o  Signal processing methods
o  Useful network architectures with a common interface
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Ketos library @“Ill
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Docs » Welcome to Ketos’s documentation! View page source
e Documentation .
docs.meridian.cs.dal.ca/ketos | Welcome to Ketos's documentation!

Introduction

e Source code

aitlab.meridian.cs.dal.ca/public ketOS Ketos is a software package for acoustic data analysis with neural networks. It was developed with a particular eye to detection and
. classification tasks in underwater acoustics. Ketos is written in Python and utilizes a number of powerful software packages including
projects/ketos Underwater acoustic detection and NumPy, HDF5, and Tensorflow. It is licensed under the GNU GPLv3 license and hence freely available for anyone to use and modify.
classification with decp neural Th? project is hosted on GitLab at iJH]v\: ‘,{H]:1|l,lm‘1'l<“;HHNJ\;t\.«‘;i ]mMu' gmv'\m‘l\ ketos .
networks

Ketos was developed by the MERIDIAN Data Analytics Team at the Institute for Big Data Analytics at Dalhousie University. We are
greatful to Amalis Riera and Francis Juanes at the University of Victoria, Kim Davies and Chris Taggart at Dalhousie University, and
Kristen Kanes at Ocean Networks Canada for providing us with annotated acoustic data sets, which played a key role in the development
work. The first version of Ketos was released in April 2019.

The intended users of Ketos are primarily researchers and data scientists working with (underwater) acoustics data. While Ketos comes
1.0 with complete documentation and comprehensive step-by-step tutorials, some familiarity with Python and especially the NumPy package
would be beneficial. A basic understanding of the fundamentals of machine learning and neural networks would also be an advantage.

Search I The name Ketos was chosen to highlight the package’s main intended application, underwater acoustics. In Ancient Greek, the word
ketos denotes a large fish, whale, shark, or sea monster. The word ketos is also the origin of the scientific term for whales, cetacean.
Introduction Indices and tables
Installation
o Index
e Module Index
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Workflow vision
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Workflow visions
I
MERIDIAN’s library of pre-trained models
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Workflow visions
I
MERIDIAN’s library of pre-trained models
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right whales + ships

right whales + humpback whales
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Workflow visions
I
MERIDIAN’s library of pre-trained models
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Workflow visions
I
MERIDIAN’s library of pre-trained models
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Workflow visions
I
MERIDIAN’s library of pre-trained models
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Workflow visions
I
MERIDIAN’s library of pre-trained models
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Workflow visions @““I
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Transfer learning

custom
model User’s scenario

. right whales + seismic noise

Performance
Performance

Scenario Scenario
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Interactive training tool

e visual interactive learning application
e human analyst and neural network work together

e human analyst inspects (and corrects) classifications
proposed by neural network.

e neural network improves its performance in response to
feedback from analyst
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Workflow visions

(Inter)active learning

custom
model
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Workflow visions

Data augmentation tool

A large database of annotated underwater acoustic samples (multiple species/ call types)
A variety of background noises
Users can mix and match

Data augmentation, signal processing and other methods also available
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Your inputs!
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How can we best serve the community?
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What kind of interface to build for trained detectors/classifiers?
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Thank youl!
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