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Outline

● Brief introduction to Deep Neural Networks
○ Examples of applications (image recognition, natural speech processing, etc)
○ Why is deep learning successful now?
○ Feature extraction, transfer learning
○ Basic network architectures (Multilayer perceptron , CNN, RNN)
○ Acoustic data representations

● Projects
○ Detecting arctic cod grunts (UVic data)
○ Classifying killer and pilot whales (WHOI)
○ Matching individual Killer whale calls (WHOI data)
○ Detecting Baleen whales (ONC Barclay Canyon data)

● Training Datasets
○ HF5 standard

● Data augmentation strategies
○ Image manipulation
○ Sound propagation modelling
○ Deep Generative models

● Ketos library
○ HDF5 database 

● Workflow visions
○ Interactive app
○ Data augmentation tool

● Your inputs
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Brief introduction to neural 
networks
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Examples of applications- Computer vision

Object detectionFacial Recognition



Ocean Networks Canada, Victoria, BC.  2019.04.29

Examples of applications- Natural language processing

TranslationSpeech recognition/ synthesis
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Feature extraction

Deep Learning systems aim to be end-to-end, although in practice there’s usually some level of input (signal) processing left 
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Why is deep learning successful now?

● Software improvements (algorithms + frameworks)
● Hardware Improvements ( Larger storage. Faster processors:cpus, gpus, tpus, etc. )
● Data improvements ( More and better data)

16,000 + papers on ArXiv.org

MIT Technology review
(https://www.technologyreview.com/s/
612768/we-analyzed-16625-papers-to-
figure-out-where-ai-is-headed-next/)

https://www.technologyreview.com/s/612768/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/
https://www.technologyreview.com/s/612768/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/
https://www.technologyreview.com/s/612768/we-analyzed-16625-papers-to-figure-out-where-ai-is-headed-next/
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Why is deep learning successful now?

● Software improvements (algorithms + frameworks)
● Hardware Improvements ( Larger storage. Faster processors:cpus, gpus, tpus, etc. )
● Data improvements ( More and better data)

3 million images, 9 thousand individuals 14 million images, 921 thousand synsets (categories)
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Transfer learning

● Transfer learning can drastically reduce the training time and amount of data required
● Make models more adaptable and reusable
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Basic network architectures

Multilayer perceptron

● One of the foundational architectures 
for modern Deep Learning

● Rarely used on its on nowadays
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Basic network architectures

Recurrent Neural Networks (RNNs)

● The output from previous cells  is used
by the next cells in addition to the 
inputs (“memory”)

● Works very well for sequences/ 
time-series

● Very useful for language modelling
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Basic network architectures

Convolutional neural network (CNN)

● Creates feature maps that summarize 
information from one layer to the next

● Works very well for images/spatially 
related features

● Very useful for dealing with images; the 
building block of modern computer 
vision
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Hybrid architectures

Neural Networks are usually  built by combining basic architectures 
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Acoustic data representations
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Transfer learning

● Waveforms

● Spectral representations
○ Constant Q Transform
○ Fourier transform
○ Morlet wavelet transform

● Scalar features
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Projects
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Arctic cod grunts

Using a CNN (convolutional neural network) to detect fish sounds

8 × 86

CNN 0/1



Arctic cod grunts

0/1

Using a CNN (convolutional neural network) to detect fish sounds
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Arctic cod grunts

Using a CNN (convolutional neural network) and a to detect fish sounds

Accuracy: 98.4%
Precision: 72.7%
Recall: 66.7%
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Differentiating between killer and pilot whales using ResNETs

Accuracy: 98.44%
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Differentiating between killer and pilot whales using ResNETs
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Matching individual killer whale calls with Siamese Networks

Accuracy: 94.6%

15 individuals
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Matchingindividual killer whale calls with Siamese Networks

Accuracy: 94.6%
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ONC Barclay Canyon 

Using a sequence to sequence model to detect humpback whales
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ONC Barclay Canyon 

Using a sequence to sequence model to detect humpback whales
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ONC Barclay Canyon 

Using a sequence to sequence model to detect humpback whales

Accuracy: 87%
Precision: 72%
Recall: 36%
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ONC Barclay Canyon 
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Training datasets
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Dataset standard

Dataset

Training

Validation

Test

3s_spectrograms

10s_spectrograms

Datasets are organized in hierarchical format (using HDF5) 
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Data Augmentation



Ocean Networks Canada, Victoria, BC.  2019.04.29

Simple signal manipulation tricks

● Extract the signal of 
interest and place it in a 
different background

● Change amplitude
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Sound propagation modeling

● Pass  a signal through a 
sound propagation model, 
to simulate what it would 
sound like in different 
environments
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Deep generative models

Generative Adversarial Networks

● WaveNETs
● Variational Autoencoders
● Recurrent Neural Networks
● etc
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Deep generative models

Generative Adversarial Networks
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Ketos library
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Ketos library

● Open-source python package (GPL3 license)

● Available on PyPI:  

pip install ketos

● Built on top of Numpy, Tensorflow and HDF5/PyTables

● Provides:
○ Data handling tools (including for larger than memory datasets)
○ Signal processing methods
○ Useful network architectures with a common interface
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Ketos library

● Documentation
docs.meridian.cs.dal.ca/ketos

● Source code
gitlab.meridian.cs.dal.ca/public
_projects/ketos

https://docs.meridian.cs.dal.ca/ketos
https://gitlab.meridian.cs.dal.ca/public_projects/ketos
https://gitlab.meridian.cs.dal.ca/public_projects/ketos


Ocean Networks Canada, Victoria, BC.  2019.04.29

Workflow vision
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Workflow visions

model 2 model 3model 1

MERIDIAN’s library of pre-trained models 
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model 2 model 3model 1

MERIDIAN’s library of pre-trained models 

Scenario

Pe
rf

o
rm

an
ce

Scenario

Pe
rf

o
rm

an
ce

Scenario

Pe
rf

o
rm

an
ce

right whales

right whales + ships

right whales + humpback whales

User’s scenario

right whales + humpback whales



Ocean Networks Canada, Victoria, BC.  2019.04.29

Workflow visions
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Workflow visions

model 2 model 3model 1

MERIDIAN’s library of pre-trained models 

Scenario

Pe
rf

o
rm

an
ce

Scenario

Pe
rf

o
rm

an
ce

Scenario

Pe
rf

o
rm

an
ce

right whales

right whales + ships

right whales + humpback whales

User’s scenario

right whales + seismic noise



Ocean Networks Canada, Victoria, BC.  2019.04.29

Workflow visions
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Interactive training tool

● visual interactive learning application

● human analyst and neural network work together

● human analyst inspects (and corrects) classifications 
proposed by neural network. 

● neural network improves its performance in response to 
feedback from analyst
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Workflow visions

model 2 + Data

custom 
model 

(Inter)active learning
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Workflow visions

Data augmentation tool

● A large database of annotated  underwater acoustic samples (multiple species/ call types)
● A variety of background noises
● Users can mix and match
● Data augmentation, signal processing and other methods also available
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Your inputs!
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How can we best serve the community?

What kind of interface to build for trained detectors/classifiers?

model

Desktop App

model

We App

model

CLI

model

Embedded
system
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Thank you!


