

- Deep Learning has been shown to provide excellent results
 - Text (translation, negotiations...)
 - Voice identification and Recognition
 - Video (object identification, lip reading...)
 - Image classification and generation

- However, a major bottleneck exists
 - Deep Learning requires large amounts of data!

Datasets in Modern Deep Learning

CIFAR 10

- Data quality is also critical in Machine Learning applications
 - \circ $\,$ In reality, most datasets will be very far away from ideal

- Collecting data is a hard and time-consuming task. High quality data, doubly so
- In the realm of bioacoustic it gets even harder
 - Remote, inhospitable locations
 - Manpower heavy, even with the help of Passive acoustic monitoring
 - Costly

- Bioacoustics also presents an additional bottleneck: annotating large amounts of raw data
 - Multiple sensors from PAM systems can produce an insurmountable amount of data to manually label
 - Only a fraction of the data is actually useful
 - Many Datasets could only been 1% annotated
- How can we mitigate this problem? Collect more data? Annotate more data?
- Recently, several approaches have been proposed to diversify our datasets

Data Augmentation

- Data Augmentation are techniques that can be employed to increase the size and diversity of our datasets
 - Ways to artificially generate data while still being realistic

- Can be used to increase performance of models to generalize
 - Introduces new data to the training set

• Methods range from trivial to complex, both presenting good results

Data Augmentation - Shifting time domain

Data Augmentation - Spec Augment

- When dealing with Audio, augmentation techniques can be applied in the spectrogram domain or directly to the waveform or both
 - Shifting and SpecAugment are examples of spectrograms augmentation

• Techniques applied to the waveform are also widely used

Data Augmentation - Mixup

- Changing the spectrogram generation parameters can also yield different representations of the same signal
 - Different spectral resolutions to be able to distinguish different spectral features
- Augmentation has become a default pre-processing step in many fields
 - DCASE Detection and Classification of Acoustic Scenes and Events
 - SpecAugment and Mixup being used in most works

• Simple methods that significantly increases performance of deep learning models

- Data Augmentation should not and will not replace real data!
 - Efforts towards collecting and labelling more data should continue
 - Data Augmentation tries to fill gaps present in current datasets
 - Augmented data is used alongside real data in training procedures
 - Methods are only as good as the data they try to match

Few-shot Learning

Meta-learning

Learn a learning strategy to adjust well to a new few-shot learning task Few-shot learning

Metric learning

Learn a semantic embedding space using a distance loss function

Data augmentation

Synthesize more data

GANs (Generative Adversarial Networks) and WaveNet

Generative Models

Generative Models

Ð

Generative Models

Input random variable (drawn from a simple distribution, for example uniform). The generative network transforms the simple random variable into a more complex one. Output random variable (should follow the targeted distribution, after training the generative network). The output of the generative network once reshaped.

Source: https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

Generative Models - WaveNets

1 Second

Non dilated Causal Convolutions

Generative Models - WaveNets

Output	•	•	0	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Input	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•

Generative Models - WaveNets

Will these types of method work well in bioacoustics with little modification?

• Can it be used to generate a whale upcall for example?

GANs

Input random variables (drawn from a uniform).

Generative network to be trained.

The generated distribution is compared to the true distribution and the "matching error" is backpropagated to train the network.

Source: https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

Data Augmentation

- How good do these generators need to be?
- How much data do you need to achieve good generations?
- How much augmentation do you need? What type?

How does it relate to Meridian?

Workflow visions

right whales + seismic noise

Workflow visions

Scenario

Scenario

Scenario

right whales + seismic noise

Thank you

