Deep learning can ...

- help us create better acoustic detection and classification (DC) models
- change the way we develop and use these models
Deep learning - everyday examples

Deep Learning,
Deep Neural Networks,
Artificial Intelligence (AI) ...

Speech recognition/synthesis

Facial Recognition

Translation

Object detection
Deep learning in marine bioacoustics

- Deep learning works, is now a mature technique
- Outperforms conventional DC algorithms
- It's time to build tools and applications that make these algorithms accessible to marine bioacousticians
Deep learning in a nutshell

Deep Learning aims to be end-to-end (but usually isn’t)

Machine Learning

- Feature extraction
- Classification

Deep Learning

- Feature extraction + Classification
Deep learning in a nutshell

Deep Learning aims to be end-to-end (but usually isn’t)
Transfer learning (model adaptation)

- Transfer learning can ...
 - drastically reduce amount of training data and training time
 - make models more adaptable and reusable
Workflow

Neural network adaptation to new data

1. **Pre-trained network**
 - The Deep Neural Network detects sounds and proposes classifications.

2. **Validation**
 - A human analyst validates the network’s detections and classifications.

3. **Improved training data**
 - The new validated examples are added to the network’s pool of training data.

4. **Enhanced performance**
 - The human analyst can now retrain the neural network to improve its performance.

p. 144-145:
"Towards Versatile and Adaptive Detection Algorithms in Underwater Acoustics"
Making deep learning accessible

TensorFlow ➝ Deep learning developer

TensorFlow ➝ Data scientist / marine biologist
Etymology

- In Ancient Greek, *ketos* denotes a large fish, whale, shark, or sea monster.

- *ketos* is also the origin of the scientific term for whales, cetacean.
Ketos - at a glance
Ketos - at a glance

- Written in Python
- GNU GPLv3 license - freely available to use and modify
- Hosted on GitLab: https://gitlab.meridian.cs.dal.ca/public_projects/ketos
- Fully documented code, including examples: https://docs.meridian.cs.dal.ca/ketos/
- Tutorials, version history, and more ...
- Available on the Python Package Index (PyPi) - the official third-party software repository for Python
Open-source libraries

1. Audio data manipulation & processing
 - SciPy
 - NumPy
 - librosa

2. Data handling & storage
 - PyTables

 - TensorFlow
Welcome to Keton’s documentation!

Introduction

Keton provides a unified, high-level interface for working with acoustic data and deep neural networks. Its main purpose is to support the development of deep learning models for solving challenging detection and classification problems in underwater acoustics.

Keton is written in Python and utilizes a number of powerful software packages including NumPy, HDF5, and Tensorflow. It is licensed under the GNU GPLv3 license and hence freely available for anyone to use and modify. The project is hosted on GitLab at https://gitlab.meridian.cs.dal.ca/public_projects/keton.

Keton was developed by the MERIDIAN Data Analytics Team at the Institute for Big Data Analytics at Dalhousie University. We are greatful to Amalia Riera and Francis Joanes at the University of Victoria, Kim Davies and Chris Taggart at Dalhousie University, and Kristen Kanes at Ocean Networks Canada for providing us with annotated acoustic data sets, which played a key role in the early phases of the project. The first version of Keton was released in April 2019.

The intended users of Keton are primarily researchers and data scientists working with (underwater) acoustic data. While Keton comes with complete documentation and comprehensive step-by-step tutorials, some familiarity with Python and especially the NumPy package would be beneficial. A basic understanding of the fundamentals of machine learning and neural networks would also be an advantage.

To get started with Keton, follow the Installation instructions and then proceed to the Tutorials section. For an example application of Keton, see Kirusborn, Frouzo, et al., Performance of a deep neural network at detecting North Atlantic right whale vocalisations, JASA, 147, 2656 (2020) (preprint).

The name Keton was chosen to highlight the package’s main intended application, underwater acoustics. In Ancient Greek, the word koton denotes a large fish, whale, shark, or sea monster. The word koton is also the origin of the scientific term for whales, cetacean.

Indices and tables

- Index
- Module Index
- Search Page
Ketos example: North Atlantic right whale

Training and test data

- Gulf of St Lawrence & Gulf of Maine
- Surface boys and bottom moorings
- Over 5,000 NARW upcalls
- Data and annotations available at FRDR: doi.org/10.20383/101.0241

Kirsebom, Frazao, et al. (2020) JASA 147, 2636

Example of NARW upcall

Step-by-step tutorials at: docs.meridian.cs.dal.ca/ketos/
Deep learning can ...
- help us create better acoustic detection and classification (DC) models
- change the way we develop and use these models

Ketos ...
- is an open-source Python package for developing deep learning based acoustic detectors and classifiers
- provides neural network architectures, transfer learning capabilities, tools for dealing with larger-than-memory datasets, audio processing, saving and sharing of models, and more
- offers extensive documentation and step-by-step tutorials
- check it out at https://docs.meridian.cs.dal.ca/ketos/