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e Data
o Dataset size, quality and representativeness
o  Annotation levels and compatibility

e Methods
o  Well-documented metrics, models, and processing algorithms
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o  Open-source code
o  Adaptability, reusability and collaboration principles



Dataset size, quality and
representativeness



Dataset size, quality and representativeness

Desired dataset:

e Many samples (1000s )

® Represents a great variety of conditions (reflecting the use case/goal)
o Variations of the target signals
o Variations background sound/ non-target signals
o Collected with a variety of instruments



Dataset size, quality and representativeness

Desired dataset:
e Many samples (10,000s to 100,000s )

® Represents a great variety of conditions (reflecting the use case/goal)
o Variations of the target signals
o Variations background sound/ non-target signals
o Collected with a variety of instruments

Rarely the case!



Dataset size, quality and representativeness

e Limited representation of the conditions in which the model will be

used.

Location A Location A

Training Test
performance: performance:
98% 91%

Location B

Practical use
performance:
53%




Example: NARW detection

Dataset A (Gulf of Saint Lawrence, surface )

[ 2078 samples ]

Dataset B (Gulf of Saint Lawrence, bottom )

[ 3892 samples]




Example: NARW detection

3s clips

Dataset A (Gulf of Saint Lawrence, surface )

Positive and negative labels
2078 samples .
came from validating another
detector.
Dataset B (Gulf of Saint Lawrence, bottom )
[ 3892 samples]

+ 50 x 30 min files, fully annotated (for tests)



Example: NARW detection

3s clips

Dataset A (Gulf of Saint Lawrence, surface )

[ 2078 samples ]

Dataset B (Gulf of Saint Lawrence, bottom )

[ 3892 samples]

+ 50 x 30 min files, fully annotated (for tests)

Dataset C (Gulf of Maine, surface)

[ 3000 samples ]




Example: NARW detection
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Example: NARW detection

(a) DNN Performance

90

43.3 10.4 16.8 Results on A,B, AB test sets (3s clips)
A 412 9.2 13.7
62.0 600 654

Training dataset
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Test dataset

Performance of a deep neural network at detecting North Atlantic right
whale upcalls

The Journal of the Acoustical Society of America 147, 2636 (2020); https://doi.org/10.1121/10.0001132
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® oliver s. Kirsebom'"P), Fabio Frazao', Yvan Simard?<), Nathalie Roy3, stan Matwin"?, and samuel Giard®
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Important: This is not THE universal NARW detector (not the goal)



Example: NARW detection

Important: this is not THE universal NARW detector (not the goal)

But it might still be a good starting point:
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Adapting the Gulf of Saint Lawrence model to the Emerald Basin (lots of seismic noise)
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Public and benchmark datasets



Dataset size, quality and representativeness

(Useful benchmark dataset for image classification)

images of lighters in the IMAGENET dataset



Dataset size, quality and representativeness

Still has plenty of problems

Natural adversarial examples to the IMAGENET dataset

Fox Squirrel

ImageNet-A

Photosphere Jellyfish (99%) Verdigris Jigsaw Puzzle (99%)
Z A3

iy

ImageNet-O

from “Natural Adversarial Examples, Bassart et al 2020. Pre-print: arxiv.org/pdf/1907.07174.pdf



Dataset size, quality and representativeness

B . - : i o
S'® NEW BEDFORD WHALING MUSEUM Woods Hole Oceanographic Institution

| |-|||-\/Vatkin5 Marine Mammal Sound Database

https://cis.whoi.edu/science/B/whalesounds/index.cfm

Recycling data: An annotated marine acoustic data set that is publicly
available for use in classifier development and marine mammal research

The Journal of the Acoustical Society of America 148, 2595 (2020); https:/doi.org/10.1121/1.5147208
Kristen Kanes
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Welcome to the orcadata wiki!

This is a place to share and collaborate, especially regarding bioacoustic analysis of real-time and archived audio data related
to the Orcasound open source project. Here you can learn more about Orcasound: machine learning resources related to orcas
and access to Orcasound data -- both archived training and testing data, and real-time audio streams.

https://github.com/orcasound/orcadata/wiki



Dataset size, quality and representativeness

CetaSound (ENSTA-BRETAGNE + MERIDIAN)

e Multiple species, instruments, locations
e Multiple defined tasks and benchmarks
® Pre-trained models



Annotation levels and
compatibility



Annotation levels and compatibility

File/event level annotation

Input Spectrogram
500

400

Frequency (Hz)

— Signal of interest is present

Call level annotation

Input Spectrogram

Input Spectrogram



Annotation levels and compatibility

Clip classification

Input Spectrogram

400

Frequency (Hz)
8
o

Output: “Species A detected in this 1min clip”
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Annotation levels and compatibility @l‘"‘

Clip classification

Input Spectrogram

10

60

Output: “Species A detected in this 1min clip”




Different goals, different models

Temporal Call detection

Input Spectrogram
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Time-frequency Call detection

Input Spectrogram

500

400

Annotations:
e Start/end time + min/max freq. for
target signal(s) eg:”species A call”
e What's in between
o  “Everything else”
o  “Species B call”, “Boat”,
“environmental background”
o More specific classes helpful
to reduce misclassification,
Output:

but also require bounding
&5 Input Spectrogram boxes
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Annotation levels and compatibility

Shediac_ete_2018-07-06_103047_1.wav

Input Spectrogram

Frequency (Hz)




10BJ;

Annotation levels and compatibility

Detector 1

Shediac_ete_2018-07-06_103047_1.wav

Input Spectrogram

Frequency (Hz)
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Annotation levels and compatibility

Expert validation

Shediac_ete_2018-07-06_103047_1.wav

Input Spectrogram

Frequency (Hz)

50 60
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Annotation levels and compatibility

Expert validation

Shediac_ete_2018-07-06_103047_1.wav

Input Spectrogram

Frequency (Hz)

50 60
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Annotation levels and compatibility

Expert validation

Shediac_ete_2018-07-06_103047_1.wav

Input Spectrogram

Frequency (Hz)
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Annotation levels and compatibility

Expert validation

Shediac_ete_2018-07-06_103047_1.wav

Input Spectrogram

Frequency (Hz)
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Annotation levels and compatibility

Expert validation

Shediac_ete_2018-07-06_103047_1.wav

Input Spectrogram

These annotations:

Frequency (Hz)

® Reduce the amount of data available

e Carry the biases/limitations from the first
0 10 2 Expert Anfotations %0 %0 60 detector

14 e Reduce the feature space for the model,
often presenting an unrealistic scenario

Detection




Annotation levels and compatibility

A different kind of model: sequence to sequence (Recurrent Convolutional Network)
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Annotation levels and compatibility

VAS_Sample_2019-08-13_224732.wav

Input Spectrogram
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Model output
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Annotation levels and compatibility

An n Otatio ns n Ot we I I‘S u |ted fO r Shediac_ete_2018-07-06_103047_1.wav

this kind of model
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Well-documented metrics,
methods and models
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“Explicit is better than implicit” - from the zen of python



Well-documented metrics



Well-documented metrics, methods and models

For example, common metrics might differ depending on the criteria used to establish a true
positive

True Positives
Precision =

Total Predicted Positives

Shediac_ete_2018-07-06_103047_1.wav

Input Spectrogram

400

Precision=5/5 =1

Frequency (Hz)
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For example, common metrics might differ depending on the criteria used to establish a true
positive

True Positives
Precision =

Total Predicted Positives

Shediac_ete_2018-07-06_103047_1.wav

Input Spectrogram

400

Precision=5/5 =1
or

Precision=4/5 =0.8?

Frequency (Hz)



Well-documented metrics, methods and models

For example, common metrics might differ depending on the criteria used to establish a true
positive

True Positives
Precision =

Total Predicted Positives

Shediac_ete_2018-07-06_103047_1.wav

Input Spectrogram

400

Precision= ?/8 =?

Frequency (Hz)




Well-documented methods
(for pre and post processing)




NC
Well-documented metrics, methods and models @“H’

A good example of well-documented signal processing methods:

OSmOSE report No 1

Theory-plus-code documentation of the DEPAM workflow for
soundscape description

Dorian Cazau, Paul Nguyen (2019) arxiv.org/pdf/1902.06659.pdf



Well-documented metrics, methods and models

4.1 PSD (Power Spectral density)

4.1.1 Theory
The Discrete Fourier Transform (DFT) of the m*" segment X (™) (f) is given by

N-1

X(f) = 3 zin{ nle =% (41)
n=0

The power spectrum is computed from the DFT, and corresponds to the square of the amplitude spectrum
(DFT divided by N). which for the m"" segment is given by

(m)
gy = XD (12

where PU™)( f) stands for the power spectrum. For real sampled signals, the power spectrum is symmet-
rical around the Nyquist frequency, F's/2. which is the highest frequency which can be measured for a given
Fs. The frequencies above Fs/2 can therefore be discarded and the power in the remaining frequency bins
are doubled, yielding the single-sided power spectrum

PU(f) = 2.P(f) (4.3)

where 0 < f' < fs/2. This correction ensures that the amount of energy in the power spectrum is
equivalent to the amount of energy (in this case the sum of the squared pressure) in the time series. This
method of scaling, known as Parseval’s theorem, ensures that measurements in the frequency and time domain
are comparable. The power spectral density PSD (also called mean-square sound-pressure spectral density)
is defined by:
PSD(f'.m) = M [uPa’ /Hz| (4.9)
i BAS 2
where Af = fs/2N is the width of the frequency bins, and B is the noise power bandwidth of the window
function, which corrects for the energy added through spectral leakage:

B= iNZ_‘(MF (4.5)
N ra

Note that a spectral density is any quantity expressed as a contribution per unit of bandwidth. A spectral
density level is ten times the logarithm to the base 10 of the ratio of the spectral density of a quantity per
unit bandwidth, to a reference value. Here the power spectral density level would be expressed in units of
dB re 1 pPa® /Hz.

R

Discussion This section has been integrally drawn from (Merchant et al., 2015, Supplementary Material)
without any modifications.

4.1.2 Matlab code

Correspondences with theory Eq. 4.1 is performed at lines 6-7. Eq. 4.2 is performed at lines 8. Eq.
4.3 is performed at lines 9.

if (mod(nfft, 2) = 0)

spectrumSize = nfft /2 + 1;

else
spectrumSize = nfft /2;

end
twoSidedSpectrum = ift (windowedSignal, nfft);
oneSidedSpectrum = twoSidedSpectrum(1 : spectrumSize, :):
powerSpectrum = abs(oneSidedSpectrum) .~ 2;
powerSpectrum (2 : spectrumSize —1, :) = powerSpectrum(2 : spectrumSize—1, :) .x 2:
psdNormFactor = 1.0 / (fs = sum(windowFunction .~ 2)):
powerSpectralDensity = powerSpectrum * psdNormFactor:
welch = mean( powerSpectralDensity , 2);

Discussion Drawn from the function pwelch.m in Matlab 2014a.

4.1.3 Python code

Correspondences with theory Eq. 4.1 is performed at lines 1-3. Eq. 4.2 is performed at lines 4-7. Eq.
4.3 is performed at lines 8-13. Eq. 4.4 is performed at lines 14-16.

rawFFT = np. fft . rfft (windowedSignal, nfft)

VvFFT = rawFFT + np.sqrt (1.0 / windowFunction.sum() == 2)

periodograms = np.abs (rawFFT) =+ 2

vPSD = periodograms / (fs = (windowFunction =* 2).sum())

vWelch = np.mean(vPSD, axis=0)

Discussion Adapted from the function spectrogram in scipy. with modifications only done to make this
code suitable for our variable names.



Well-documented models



Well-documented metrics, methods and models

“What exactly do you mean by ResNet50?”

-What is described in He et al 2015
-That, but with a different input size.
-Whatever | get with

import torch

model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet50', pretrained=True)

-Some other variation that’s still a residual network with 50 layers



~[Projects/netror

MaxPool

MaxPool

Conv.

B

Relu

Concat

MaxPool

Layer (type) Output Shape Param # Connected to
input_layer (InputLayer) (None, 128, 128, 3) @

conv2d (Conv2D) (None, 128, 128, 32) 896 input_layer[0][0]
max_pooling2d (MaxPooling2D) (None, 64, 64, 32) @ conv2d[0][0]
conv2d 1 (Conv2D) (None, 64, 64, 32) 9248 max_pooling2d[0][0]
max_pooling2d 1 (MaxPooling2D) (None, 32, 32, 32) © conv2d_1[0][0]
flatten (Flatten) (None, 32768) 0 max_pooling2d 1[0][0]
dense (Dense) (None, 128) 4194432 flatten[0][0]
dropout (Dropout) (None, 128) 0 dense[0][0]
dense 1 (Dense) (None, 128) 16512 dropout[0][0]
dropout_1 (Dropout) (None, 128) 0 dense_1[0][0]
weather (Dense) (None, 4) 516 dropout_1[0][6]
ground (Dense) (None, 13) 1677 dropout_1[6][0]

Total params: 4,223,281
Trainable params: 4,223,281
Non-trainable params: ©

For sharing models:

MERIDIAN

i

xfinception_v1

DOCUMENTATION
Conv

filter, anc

dilations: int[]

group: int

convolution kerne

pads: int[]




Open source software with
adaptability, reusability and
collaboration principles in mind



collaboration

Open source software: adaptability, reusability and ® ‘
@Illn-

e Well-written code is probably the most accurate documentation for methods,
metrics and models



Open source software: adaptability, reusability and
collaboration

Sharing code for verification is good.
Others can reproduce the steps and get the same results.

Sharing code for adaptation is even better.
Others can not only reproduce the steps, but can reuse parts of the code and adapt
it achieve things the original authors didn’t even anticipate




Open source software: adaptability, reusability and

collaboration

HALLO
Humans and ALgorithms Listening for Orcas

e Collaboration between SFU, DFO, Dalhousie, Carleton and OrcaSound

e Aim to produce effective models for detection and classification of whales (focus on southern

resident orcas)

e Develop reusable and adaptable frameworks for collaborative annotations, data access and

model adaptat’
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Key messages

Share as much as possible (data, annotations, trained
model, code, benchmark results)
Document everything

Build software that is adaptable and promote
collaboration




Thank youl!



