

Data Augmentation: Improving your Datasets

Bruno Padovese

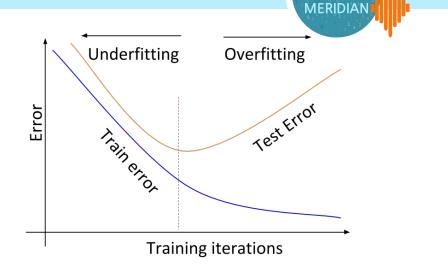
MERIDIAN, Institute for Big Data Analytics, Dalhousie University, Halifax, Canada

Introduction

DNNs are smart, but not always...

- Tend to overfit the training set
- Can easily inherit and perpetuate biases

filename	sel_id	label	start	end
NOPP6_EST_20090329_090000.wav	0	1	51.413506	54.413506
	1	1	41.592974	44.592974
	2	1	97.386199	100.386199
	3	1	115.234384	118.234384
	4	1	288.680821	291.680821

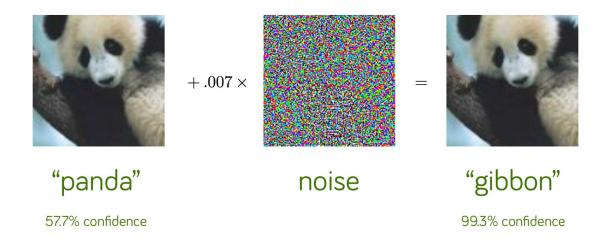


Benefit from large amounts of labeled data

- Costly to build a dataset
- Domain specific data may require input from experts

DNNs classifiers can often be sensitive to very minor changes

Ex: Adversarial attacks

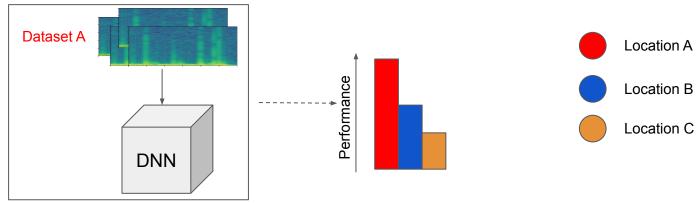


DNNs problems in Underwater Acoustics

It may happen naturally as well:

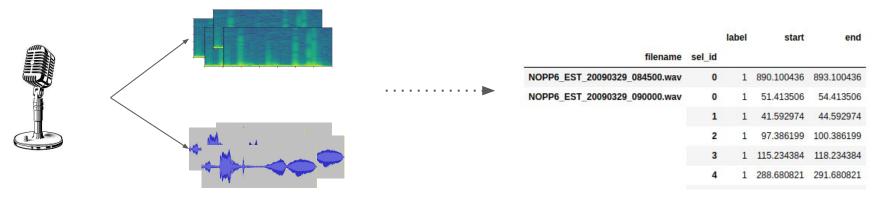
- Changes in amplitude
- Different types of hydrophones
- Distinct geographic locations

Thus, a model trained in one Dataset may perform poorly when tested in another location



Solutions...?

- More data...
 - It would always be helpful to simply have access to more data from all sources
 - Would require a lot of effort towards collecting and annotating more data



What if we could artificially inflate the size of our dataset?

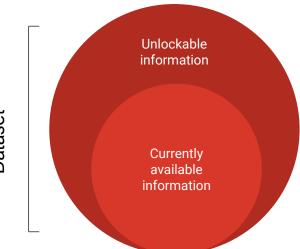
What is data augmentation?

Data Augmentation is a data-space solution to the problem of data limitation

- Suit of techniques that enhance the size and quality of training datasets
- Inexpensive way to acquire more labeled data

Possible techniques include:

- Geometric transformations
- Color space augmentations
- Mixing
- Random erasing
- Deep learning based methods

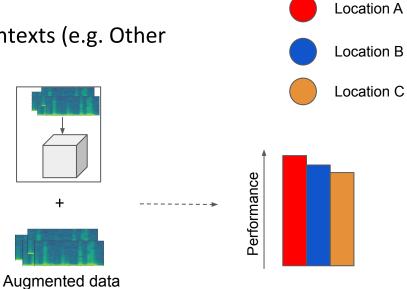


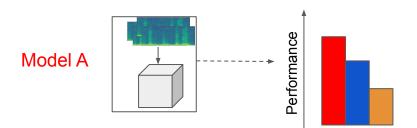
Dataset

What is data augmentation?

- Data Augmentation can:
 - Enhance the quality of training sets
 - Leading to better classifiers
 - Expands model adaptability to other contexts (e.g. Other geographic locations)

Model A





Simple Data Augmentation

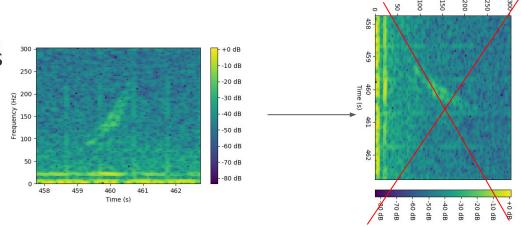
Source: Data Augmentation for Plant Classification

'Safety' of Data Augmentation

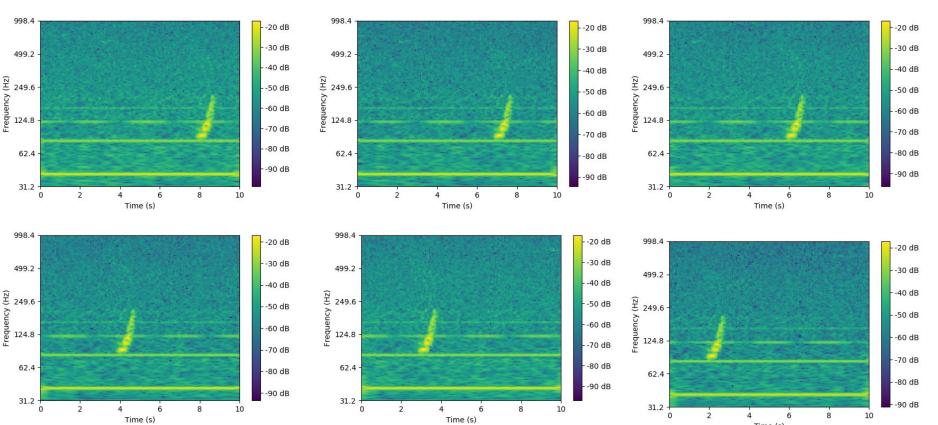
- The type of Augmentation will depend on your data
 - Is the label preserved post-transformation?
 - 'Unsafe' transformations are those that do not preserve the label

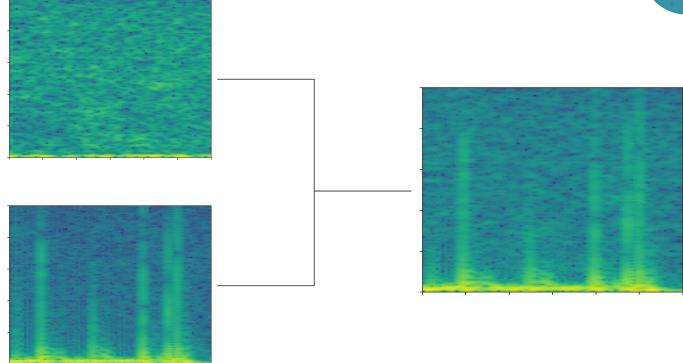
Rotations and flips

- Generally safe on ImageNet
- Problematic on spectrograms

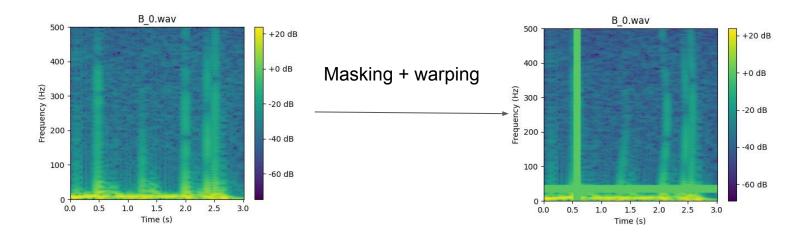


Temporal Shifting



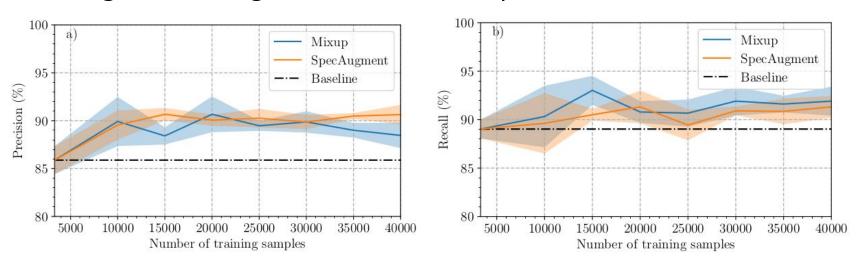


SpecAugment



Benefits of data Augmentation

Original training dataset: 3309 samples

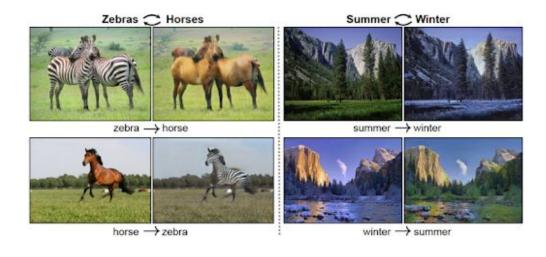


Kayra: A a python package that provides implementation of several data augmentation techniques

Limitations of Data Augmentation

- Simpler augmentation methods generate new samples in a very specific manner
 - Limited by the type of transformation
 - Won't generate completely new data
 - Generative methods based on deep learning are capable of modeling raw audio
- Limited by the data already available
 - Data augmentation does not replace real data

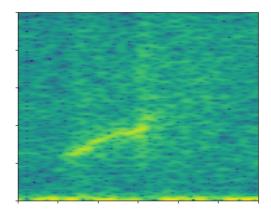
Deep Generative Models



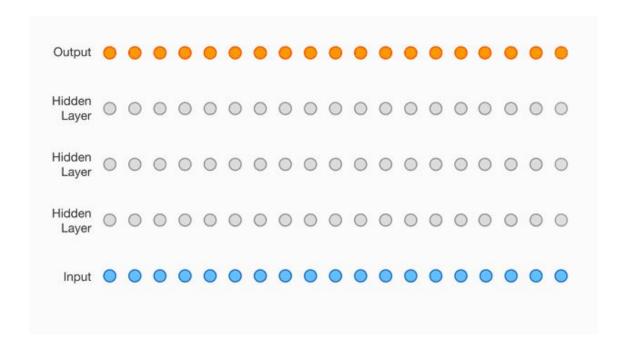
Generative Models - Audio

Human Speech

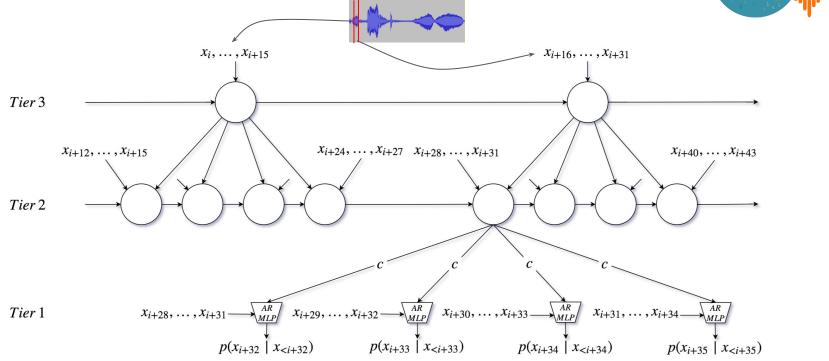
NARW upcall



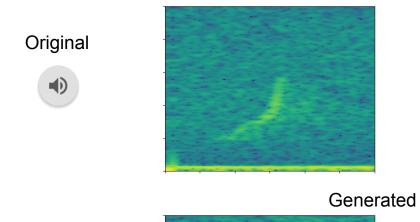
Generative Models - WaveNets

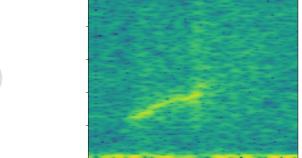


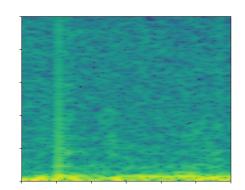
SampleRNN



SampleRNN - Quality of generations







So... what is good enough?

Are our generated samples good enough to be included in our dataset?

- Problem: labeling a new sample as positive when there is no vocalization
- How do we evaluate our generated samples?

There are several possibilities with trade-offs

- Conduct a manual labelling process of the generated samples
 - Would produce an accurate augmented set
 - Expensive
- Use a pre-trained model to classify each generation
 - Inexpensive but less accurate
 - Could inherit model bias

Generated samples evaluation

- A more balanced approach can be considered
 - Manually label some generated samples
 - Use these samples in conjunction with a pre-trained model to label the remaining generations
- Clustering methods can be used to group generated samples into classes
 - With a visualization tool, we can then ask for the user to label only the samples that the method is not confident about

