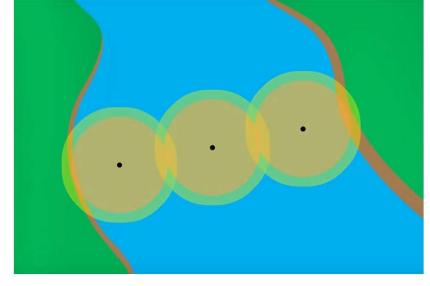
A Python tool for Acoustic Telemetry Analysis

Steven Bergner – sbergner@sfu.ca January 27, 2021 Meridian - OTN Project at SFU's Big Data Hub



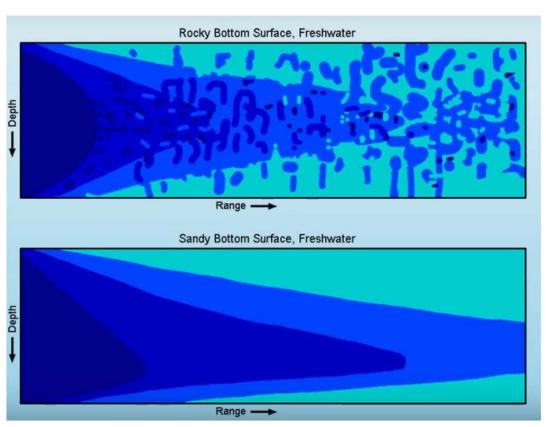
Acoustic Telemetry – Detection Range

Factors driving Signal to Noise Ratio (SNR)

- Water quality at research site
 - Salinity, turbidity, temperature
- Weather
- Biological noise
- Anthropogenic noise
- Moorings
- Bottom type / Geomorphology / Vegetation

Receivers forming a gate

Source: Vemco/INNOVASEA

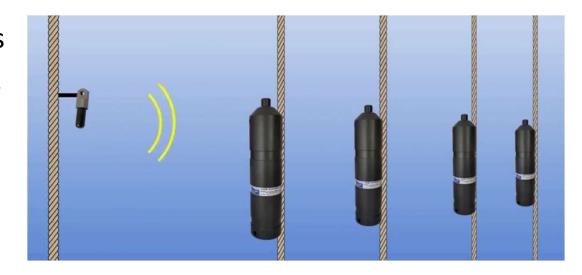

https://support.vemco.com/s/article/How-much-detection-range-can-l-expect-from-my-tags-and-receivers

Understanding Detection Range

- Factors are specific to research site
- Can change over time
- No single model works well under all conditions

Example: Bottom type effect on SNR

Source: Vemco


Proposed Workflow

- 1. Perform range test
- Collect Environmental Variables for Test location and time
- 3. Combine data
 - Detection event based
 - Time grid for detection rate all variables are sampled and aggregated on one grid of time bins
- 4. Visual Analysis of pair-wise relationships
- 5. Statistical Modeling DR
- 6. Use predictive model of DR for **field study** analysis

1. Range Test

- Eliminates movement of tags
- Fixed moorings for Receivers and Transmitters
- Test for multiple days or months

Source: Vemco - https://support.vemco.com/s/article/How-much-detection-range-can-l-expect-from-my-tags-and-receivers

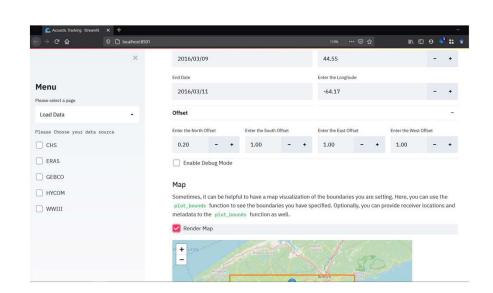
2. Data Sources

- Environmental variables
 - Sourcing via Kadlu.fetch
- Custom variables via
 - NetCDF import
- Tidal time tables interpolation

Kadlu.fetch data sources

Source	Variable(s)	Notes
ERA5 – Copernicus Climate Datastore	 Wind speed and direction Wave height, direction, period Precipitation type and flux Energy fluxes and stress 	0.5° resolution Global coverage GRIB data format
нусом	SalinityTemperatureOcean currents	0.08° resolution Global coverage NetCDF data format
WWIII – NOAA/NCEP WaveWatch Gen 3	 Wind speed and direction Wave height, direction, period 	0.5° x 0.5° global resolution Global coverage GRIB data format
GEBCO	Bathymetry	15 arc-second resolution Global coverage NetCDF data format

Tool Ecosystem


- Data Science Community
 - R Rstudio, CRAN
 - **Python** Anaconda, Pip package management
- Env. Variables: Kadlu Meridian https://docs.meridian.cs.dal.ca/kadlu/
- Metadata: Resonate OTN
 https://resonate.readthedocs.io/en/latest/index.html

4. Demo

- Jupyter notebooks
 - Brief version with YAML configuration
 - Details of data sourcing
- Visual Analysis
- Desktop App (streamlit)

References

- Meridian Tools
 https://meridian.cs.dal.ca/tools-services/
- Acoustic Tracking Tool
- Documentation
 Temporary location: http://rcg-garage.dcr.sfu.ca/
 Project Page will be update with source code location: https://meridian.cs.dal.ca/acoustic-tracking-toolkit/

