Embedded Deep Learning

MERIDIAN, Institute for Big Data Analytics,
Dalhousie University, Halifax, Canada
Introduction

- Deep learning on the edge
- Platforms
- Constraints
Deep learning on the edge

- Conventional pipeline

Data processing happens far from the source
Deep learning on the edge

- Edge computing

Data processing happens near the source, with the processing algorithms embedded into the hardware.
Deep learning on the edge

What is deep learning?

Deep learning is an approach to machine learning that uses deep neural networks.

Everyday applications:

- Speech recognition & synthesis
- Face Recognition
- Translation
- Object detection
Better performance in many tasks

High adaptability and reusability

Requires more resources (data, computing power, etc)

Often hard to interpret

Can they be embedded into PAM systems?
Deep learning requires more resources during the training phase than during the deployment phase.
Platforms for edge computing

Small computers

Raspberry Pi

Banana Pi

Rock Pi
Platforms for edge computing

Deep learning-specific processors

Google Coral edge TPU

- Carrier board
- PCIe modules
- USB accelerator
- System on Module
- Solderable module
Platforms for edge computing

Deep learning-specific processors

Google Coral edge TPU

Carrier board

Solderable module
Platforms for edge computing

Carrier boards (development, evaluation boards)

- Device
- Carrier board
- User's application

More general

More specific
(Power budget, environmental conditions, additional hardware)
Platforms for edge computing

Deep learning-specific processors

Jetson Nano

Jetson Tx2

Jetson Xavier

Nvidia Jetson

Jetson Nano Dev board
Platforms for edge computing

Microcontrollers

- A number of basic components you would find in a computer (processors, memory, oscillators, etc) in one chip
- Lower power consumption and computing power
Platforms for edge computing

Microcontrollers

- DFRobot Firebeetle
 - With Espressif’s esp32

- Arduino nano ble sense
 - With Nordic’s nRF52840

- NUCLEO-F746ZG
 - With ST’s STM32F746

- Arduino Portenta H7
 - With ST’s STM32H747
Platforms for edge computing

Software

TensorFlow → TensorFlow Lite → TensorFlow Lite

For microcontrollers

train/run → run → run
Platforms for edge computing

Software

TensorFlow → TensorFlow Lite → TensorFlow Lite
For microcontrollers

train/run → run → run

Computer → Raspberry Pi → Microcontroller
Platforms for edge computing

Software

PyTorch Chainer Caffe2 mxnet Cognitive Toolkit XGBoost PaddlePaddle

ONNX

depC

(https://github.com/ai-techsystems/deepC)
Constraints

- Knowledge of electronics/low-level programming
- Small computers/ DL SoMs
- Microcontrollers
- Power consumption
- Computing power
- Storage capacity
- Memory

Knowledge of electronics/low-level programming

Small computers/ DL SoMs

Microcontrollers

Power consumption
Computing power
Storage capacity
Memory
Constraints

- **Knowledge of electronics/low-level programming**
- **Small computers/ DL SoMs**
 - Power consumption: 3~10W
 - Computing power: 4x 1.5GHz
 - Storage capacity: 10s, 100s GBs
 - Memory: 1~8GB

- **Microcontrollers**
 - Power consumption: 100s mW~2W
 - Computing power: 40~500 MHz
 - Storage capacity: 256KB ~ 1MB
 - Memory: 100s KB, few MB
Conclusions

- The kind of model you can run in the field will depend on what devices your system can afford

- Small computers and DL SoMs are capable of running relatively complex models

- Microcontrollers will run simpler models, which might be enough for some applications
Thank You!