Embedded Deep Learning

MER

Fabio Frazao

MERIDIAN, Institute for Big Data Analytics, Dalhousie University, Halifax, Canada

- Deep learning on the edge
- Platforms
- Constraints

Deep learning on the edge

• Conventional pipeline

Deep learning on the edge

• Edge computing

Data processing happens near the source, with the processing algorithms embedded into the hardware

Deep learning on the edge

• What is deep learning?

Deep learning is an approach to **machine learning** that uses **deep neural networks**

Everyday applications:

Speech recognition & synthesis

Translation

Face Recognition

Object detection

Luo et al.: JASA Express Letters Published Online 4 January 2019 https://doi.org/10.1121/1.5085647 Convolutional neural network for detecting odontocete echolocation clicks Wenyu Luo, Wuyi Yang,^{a)} and Yu Zhang Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education. College of Ocean and Earth Science. niversity, Xiamen, China wyyang@xmu.edu.cn, yuzhang@xmu.edu.cn Marine Mammal Species Classification using Convolutional Neural Networks and a Novel Acoustic Representation **SCIENTIFIC** Mark Thomas¹, Bruce Martin², Katie Kowarski², Briand Gaudet², and Stan REPORTS Matwin^{1,3*}

Deep learning on the edge

ORCA-SPOT: An Automatic Killer Whale Sound Detection Toolkit Using Deep Learning

Christian Bergler¹, Hendrik Schröter¹, Rachael Xi Cheng², Volker Barth³, Michael Weber³, Elmar Nöth³, Heribert Hofer^{0,2,4,5} & Andreas Maier⁰

Performance of a Deep Neural Network at Detecting North Atlantic Right Whale Upcalls

Oliver S. Kirsebom,^{1,-10} Fabio Frazao,¹ Van Simard,^{2,3} Nathalie Rog,³ Stan Matoin,^{1,4} and Samuel Giard,³ ¹ Anistatic for Big Data Analytics, Dahonise Uliverstrij, Rajdiar, Nova Sotio BH JR. Condo ² Fibbrics and Ocoans Canada Chair in undervater acoustics applied to cosystem and marine mammads, Marine Sciences, Folistite, Fibbrieria Jd Queber data Minosaki, Rimosaki, Qedee, Canada ³ Marries Lamontagne Institute, Fibbrieria Jd Qoeans Canada, Mori-Joli, Qedee, Canada ⁴ Marries Lamontagne Institute, Fibbrieria and Ocoans Canada, Mori-Joli, Qedee, Canada ⁴ Marries Analysis Anadami, Jd Soinerse, Warnaw, Poland

of Sperm Whale Bioacoustics Peter C. Bermant¹, Michael M. Bronstein^{1,2,7}, Robert J. Wood^{1,4}, Shane Gero⁶ &

David F. Gruber 01,6

Staple deep neural networks are useful for underwater acoustics.

- + Better performance in many tasks
- + High adaptability and reusability
 - Requires more resources (data, computing power, etc)
 - Often hard to interpret

Can they be embedded into PAM systems?

Deep learning requires more resources during the training phase than during the deployment phase

Training

Running

Small computers

Raspberry Pi

Banana Pi

Rock Pi

Deep learning-specific processors

Google Coral edge TPU

			System on Module	olderable module
Carrier board	PCIe modules	USB accelerator		

Google Coral edge TPU

Carrier board

Carrier boards (development, evaluation boards)

Device

Carrier board

More general

User's application

More specific (Power budget, environmental conditions, additional hardware)

Nvidia Jetson

Deep learning-specific processors

Jetson Nano

Jetson Tx2

Jetson Xavier

Jetson Nano Dev board

Microcontrollers

- A number of basic components you would find in a computer (processors, memory, oscillators, etc) in one chip
- Lower power consumption and computing power

Microcontrollers

DFRobot Firebeetle

With Espressif's esp32

With Nordic's nRF52840

With ST's STM32F746

Arduino Portenta H7

With ST's STM32H747

Software

Software

Software

Software

(https://www.st.com/en/embedded-software/x-cube-ai.html)

Conclusions

- The kind of model you can run in the field will depend on what devices your system can afford
- Small computers and DL SoMs are capable of running relatively complex models
- Microcontrollers will run simpler models, which might be enough for some applications

Thank You!