Data Augmentation:
Improving your Datasets
- @
‘ Bruno Padovese
MERIDIAN, Institute for Big Data Analytics,

Dalhousie University, Halifax, Canada




Passive Acoustic Monitoring (PAM)

e One of the best ways to monitor marine mammals
o Capable of months of uninterrupted data
collection
o Efficient way of monitoring large remote areas

e Massive amounts of data generated
o Easily exceeds capacity for manual labeling

e Automated sound detection and classification
systems can help mitigate this problem

Machine learning can help us build these systems
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label start end

filename sel_id

NOPPG_EST 20090329 084500.wav. 890100436 893100436

NOPPG_EST 20090329 090000.wav. 51413506  54.413506
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DNN

DNN are particularly known for requiring large amounts of data
® Costly to build a dataset a well annotated dataset
e Domain specific data may require input from experts

label start end

filename sel id

NOPP6_EST 20090329 084500.wav 890.100436 893.100436

NOPP6_EST_ 20090329 090000.wav 51.413506 54.413506
41592974 44592974

0 1
0 1
1 1
2 1 97.386199 100.386199
3 1 115234384 118.234384
4 1
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DNNs problems in Underwater Acoustics

DNNs may be sensitive to:
e Changes in amplitude
e Different types of hydrophones
® Distinct geographic locations

Thus, a model trained in one Dataset may perform poorly when tested in another location
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Solutions...?

e More data...

o It would always be helpful to simply have access to more data from all sources
m Would require a lot of effort towards collecting and annotating more data

filename sel id

label

start

end

NOPP6_EST 20090329 084500.wav
NOPP6_EST 20090329 090000.wav

e What if we could artificially inflate the size of our dataset?
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What is data augmentation?

Data Augmentation is a data-space solution to the problem of

data limitation
e Suit of techniques that enhance the size and quality of training
datasets

® Inexpensive way to acquire more labeled data

Possible techniques include:

® Geometric transformations
Color space augmentations
Mixing
Random erasing
Deep learning based methods
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Simple Data Augmentation

Original  Rotation Blur
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Data Augmentation In acoustics

- The type of Augmentation will depend on your data
- Is the label preserved post-transformation?

Rotations and flips
® Generally safe on ImageNet
® Problematic on spectrograms
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Mixup




SpecAugment
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Benefits of data Augmentation

® Original training dataset: 3309 samples
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Limitations of Data Augmentation

e Simpler augmentation methods generate new samples in a very specific
manner
o Limited by the type of transformation
o Won't generate completely new data
o Generative methods based on deep learning are capable of modeling
raw audio

e Limited by the data already available
o Data augmentation does not replace real data



Deep Generative Models
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Generative Models - Acoustic
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So... what is good enough?

These generative methods will generate data that can vary in quality

Are our generated samples good enough to be included in our dataset?
® Problem: Feeding our model bad quality samples to our training
procedure might harm the model’s ability

We can evaluate our generated samples through an active learning
approach
® Classify each generation and ask a human analyst to oversee
the most uncertain samples




