
Data Augmentation: 
Improving your Datasets 

Bruno Padovese 
MERIDIAN, Institute for Big Data Analytics, 

Dalhousie University, Halifax, Canada



Passive Acoustic Monitoring (PAM)

● One of the best ways to monitor marine mammals
○ Capable of months of uninterrupted data 

collection
○ Efficient way of monitoring large remote areas

● Massive amounts of data generated
○ Easily exceeds capacity for manual labeling

● Automated sound detection and classification 
systems can help mitigate this problem

Machine learning can help us build these systems
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DNN

DNN are particularly known for requiring large amounts of data
● Costly to build a dataset a well annotated dataset
● Domain specific data may require input from experts



DNNs problems in Underwater Acoustics

DNNs may be sensitive to:
● Changes in amplitude
● Different types of hydrophones
● Distinct geographic locations

Thus, a model trained in one Dataset may perform poorly when tested in another location
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Solutions…?

● More data…
○ It would always be helpful to simply have access to more data from all sources

■ Would require a lot of effort towards collecting and annotating more data

● What if we could artificially inflate the size of our dataset?



What is data augmentation?

Data Augmentation is a data-space solution to the problem of 
data limitation
● Suit of techniques that enhance the size and quality of training 

datasets
● Inexpensive way to acquire more labeled data

Possible techniques include:
● Geometric transformations
● Color space augmentations
● Mixing
● Random erasing
● Deep learning based methods

Unlockable 
information

Currently 
available 

information 

D
at

as
et



Simple Data Augmentation



Data Augmentation In acoustics

- The type of Augmentation will depend on your data
- Is the label preserved post-transformation?

Rotations and flips
● Generally safe on ImageNet
● Problematic on spectrograms



Temporal Shifting

Webnar series



Mixup



SpecAugment

Masking + warping



Benefits of data Augmentation

● Original training dataset: 3309 samples



Limitations of Data Augmentation

● Simpler augmentation methods generate new samples in a very specific 
manner
○ Limited by the type of transformation
○ Won't generate completely new data
○ Generative methods based on deep learning are capable of modeling 

raw audio

● Limited by the data already available
○ Data augmentation does not replace real data



Deep Generative Models



Generative Models - Acoustic
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So... what is good enough?

These generative methods will generate data that can vary in quality

Are our generated samples good enough to be included in our dataset?
● Problem: Feeding our model bad quality samples to our training 

procedure might harm the model’s ability

We can evaluate our generated samples through an active learning 
approach

● Classify each generation and ask a human analyst to oversee 
the most uncertain samples


