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Deep learning can ...

® help us create better acoustic detection and classification (DC) tools
e change the way we develop and use these tools
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Deep learning in marine bioacoustics
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Deep learning works, is now a mature
technique

Often outperforms more conventional
DC algorithms

However, these algorithms are not
always accessible to marine acousticians
(or application developers supporting
marine scientists)
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Ketos - at a glance
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Ketos - at a glance
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Ketos - at a glance

e Written in Python
® GNU GPLv3 license - freely available to use and modify

e Hosted on GitLab:
https://gitlab.meridian.cs.dal.ca/public projects/ketos

Free as in Freedom e Documented code, including examples:
https://docs.meridian.cs.dal.ca/ketos/

copyleft license
e Tutorials, version history, and more ...

e Available on the Python Package Index (PyPi) - the official
third-party software repository for Python
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https://gitlab.meridian.cs.dal.ca/public_projects/ketos
https://docs.meridian.cs.dal.ca/ketos/
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Documentation - https://docs.meridian.cs.dal.ca/ketos/ @““
|
Docs » Tutonials » Tutorial: Training a Binary ResNet Classifier View page source
||||II Tutorial: Training a Binary ResNet Classifier

You can download an executable version (Jupyter Notebook) of this tutorial and the data required to follow along & here.

ketos

Underwater acoustic detection and
classification with deep neural networks =

North Atlantic Right Whale detector-part 1

This is the first of a two parts tutorial illustrating how to build a deep learning acoustic detector with ketos.

‘We'll use the database built in the Creatine o trainine database tutorial, in which we converted raw audio files to
22 spectrograms of the North Atlantic Right Whale's stereotypical upcall. If you didn't follow that tutorial, you can find the
resulting database in the .zip file linked at the top of this page. There you will also find an executable version of this jupyter
notebook, in case you want to follow along.

Search I
Our final goal is to have a detector that can take a long .wav file (e.g.: 30 min) and tell us where within that file are the right
whales upcalls.
Introduction
Installation The core part of such detector will be a binary classifer that takes 3-s long spectrograms and classifies them into "contains an
upeall” or "does not contain an upcall”. We will treat these two classes as "1" and "0". This is what we'll cover in this tutorial.
o Tutoria
: - The second part will take this binary classifier and turn it into a detector.
(reating a training database
(Basic)
Creating a training database Contents:
(Extended) 1. Importing the packages

2. Creating the data feed
3. Creating and training the Neural Network

Training a

(reating a detector

@ Modules

@ How to contribute The lines below define the random seeds used in the tutorial. This is necessary to ensure that you get the precisely the same

Versi results every time you run the code.
ersions
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https://docs.meridian.cs.dal.ca/ketos/
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Typical Ketos users @“ﬂl
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Acoustic data analyst Application developer Deep learning developer Deep learning researcher
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Typical Ketos users

ﬁcoustic data analysﬁ Application developer Deep learning developer Deep learning researcher

Has domain expertise

Has some basic programming experience (if using ketos directly)
Interested the application of detectors/classifiers to their data
Mostly follows the default routes/uses pre-trained models
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Typical Ketos users

Acoustic data analyst ﬁpplication developﬁ Deep learning developer Deep learning researcher

e Experienced software developer

e Not (necessarily) experienced in machine learning/data analysis

e Interested in developing applications (web, desktop,etc) around
trained detectors/classifiers.

e The product of their work is used by data analysts (allowing them to
benefit from ketos indirectly)
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Typical Ketos users

Acoustic data analyst Application developer 6eep learning develop% Deep learning researcher

® Has experience with data analysis and machine learning

e Isinterested in applied deep learning: wants to build models that
work for a given acoustic application

® Not interested in developing new machine learning methods
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Typical Ketos users

Acoustic data analyst Application developer Deep learning developer ﬂ)eep learning researcher\

® Has expertise with data analysis and machine learning
e Isinterested in developing new machine learning methods (for
acoustics)
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Interfaces

Ketos can be used with different interfaces:

Scripts

Command-line interfaces

Jupyter notebooks

In the backend of web/desktop applications

Through other applications/frameworks compatible with the exported models
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Interfaces

Command-line interface for headless
operation onboard a floating data
collection station

Raspberry Pi 3B

DFO/ Maurice Lamontagne Institute (MLI)
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Interfaces

A web application
running Ketos in the
backend
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Interfaces

File Settings Display Spectrogram _Help
27 March 2001 at 110404 UTC @

Exported Ketos model being used
by PAMGuard
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Read more about the new PAMGuard deep learning module here: https://conservationcoding.com/2021/06/07/deep-learning-in-pamguard/
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https://conservationcoding.com/2021/06/07/deep-learning-in-pamguard/

Summary

Deep learning can ...
e help us create better acoustic detection and classification (DC) models

e change the way we develop and use these models

® is an open-source Python package for developing deep learning based
acoustic detectors and classifiers

e provides neural network architectures, transfer learning capabilities,
tools for dealing with larger-than-memory datasets, audio processing,
saving and sharing of models, and more

is accessible to different kinds of users
Can be used with different interfaces

offers documentation and step-by-step tutorials

check it out at https://docs.meridian.cs.dal.ca/ketos/
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https://docs.meridian.cs.dal.ca/ketos/

Thank you!
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